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In spite of the inescapable tangle between the metal-metal and 
the metal-ligand-metal contributions to the stability of bridged 
dimers, the existence of very long bonds in some Zr(III) dimers 
had been suggested recently by several experimental5"7 and the­
oretical7,8 investigations. The present ab initio calculations provide 
evidence that the bond lengths observed in [Cp2Zr(^-X)J2 dimers 
and the reported diamagnetism of those molecules can be explained 
only by such "superlong" metal-metal a bonds. The abnormally 
large Zr-Zr bond lengths are explained by the existence of steric 
repulsions that develop between the cyclopentadienyl ligands in 
the cis position with respect to the dimetal unit. This repulsion 
had been estimated previously by means of SCF calculations to 
reach 6 kcal-mor1 for [(C5H5)2Zr(^-PH2)]2 at the observed ge­
ometry (̂ Zr-Zr = 3.65 A).8 Since the Zr-Zr a bond is expected 
to act as a restoring force balancing the steric repulsion, this value 
of 6 kcal-mor1 could therefore fix an order of magnitude to the 
stabilization energy attributable to the "superlong" Zr-Zr bond. 
The comparable structures736 and the diamagnetism of Hf(III) 
dinuclear complexes36 suggest that a similar rationalization should 
hold for those dimers. In contrast to that, the 3d orbitals of 
titanium, more contracted and less polarizable, cannot overlap 
enough to balance the steric repulsion of the opposite Cp rings. 
The metal-metal distances then become larger than 3.7 A, and 
the Ti-Ti interaction is reduced to an antiferromagnetic coupling. 

(36) (a) Cotton, F. A.; Kibala, P. A.; Wojtczak, W. A. Inorg. Chim. Acta 
1990,177, 1. (b) Girolami, G. S.; Wilson, S. R.; Morse, P. M. Inorg. Chem. 
1990, 29, 3200. 

The weakening of the metal-metal a overlap when the metallacycle 
flattens finds another origin in the region of nonbonding charge 
concentration generated around the center of symmetry of the 
system by the close contact of the bridging ligand lone pairs. The 
presence of this charge density generates a repulsive interaction 
with the metal-metal bonding combination of dr2 orbitals, which 
responds by progressively transforming into a nonbonding d^ 
combination. In the considered range of distances (3.0-4.0 A) 
this rehybridization is slow and partial for Zr(III) dimers, which 
retain significant a character up to ^Zr-Zr = 4 A. Conversely, the 
transformation into c\yi orbitals is already complete for bridged 
Ti(III) dimers at dTl.Tl

 = 3.65 A. 
As for the [Cp2Ti(^-X)J2 complexes, the electronic structure 

of [Cp(At-T)1:rj5-C5H4)Ti(PMe3)]2, belonging to the C2 point group, 
can be rationalized in terms of coupled Cp2ML3 fragments. At 
variance from the C2v complexes, however, no steric repulsion 
develops between the Cp cycles, and the metal-metal a coupling 
occurs through the overlap of lateral hybrid orbitals of the Cp2Ti 
fragments. A relatively short metal-metal distance (3.223 A) 
can therefore be observed, and the Ti-Ti a overlap is not hindered 
by charge concentrations arising from the other ligands. A rather 
strong Ti-Ti a bond is then obtained in spite of the slight tilt angle 
(21°) of the overlapping metal orbitals. 
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Abstract: We show that second-moment-scaled Htickel theory can be used to account for the bond length variations found 
in elemental gallium, borohydride, transition metal carbonyl, and hydrocarbon structures. Among the systems investigated 
are Ga, B8H8

2", B9H9
2", B10H10

2", Os5(CO)16, Ir4(CO)12, [Re4(CO)16]
2", buckminsterfuUerene, naphthalene, spiropentane, and 

butadiene. We also show that the second-moment-scaled Hilckel theory correctly resolves the differences in energies among 
the closo, nido, and arachno borohydride cluster forms. These latter results are in good agreement with Wade's rules for clusters. 
Finally, we discuss the underlying assumptions of second-moment-scaled theory. 

Much of our understanding of the variations in bond distances 
comes from extended Huckel (eH) molecular orbital calculations 
and overlap population analyses. This latter technique has been 
successfully applied to the full range of chemical compounds 
including main group, transition metal, molecular, and solid-state 
systems. The overlap population method and its applications have 
been well reviewed.1 Briefly, in this method one holds all bonds 
of a given type (e.g., C-C or B-B bonds) at the same single length. 
One then calculates the net amount of in-phase or out-of-phase 
atomic overlap in all the occupied molecular orbitals for a specific 
pair of atoms. This net amount of overlap is the overlap popu­
lation.2 It is found that this overlap population correlates well 
with the actual bond distances. 

This technique however has a shortcoming in that one cannot 
in general deduce quantitatively the variations in bond lengths.3 

In part, the reason for this is the difficulty one has of studying 
directly changes in bond lengths with Huckel molecular orbital 
calculations. Indeed, it is for this reason that one holds bond length 
constant in deriving useful overlap populations. 

* Author to whom correspondence should be addressed. 
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Recently, a new modification of Huckel molecular orbital theory 
has been introduced which obviates the need for careful adjustment 
of bond lengths.4 This modification, which we call second-moment 
scaling, has been proven successful in rationalizing crystalline 
structure type as a function of electron count for a variety of 

(1) Discussions of the overlap population method are given in: (a) Al­
bright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in 
Chemistry; Wiley: New York, 1985; p 21. (b) Salem, L. The Molecular 
Orbital Theory of Conjugated Systems; Benjamin: New York, 1966; p 134. 

(2) The formal definition for overlap population between two atomic or­
bitals *„ and *„ is P^, = JHlN1C^CnS1,,, where N, is the occupation of the 
Jth molecular orbital, S1,, is the overlap integral between #„ and *„ and C -
and C„ are the LCAO coefficients for the ith molecular orbital. 

(3) It should be noted that in the case of unsaturated hydrocarbons one 
can find a quantitative relation between overlap population and bond lengths. 
See: Coulson, C. A.; Golebiewski. Proc. Phys. Soc., London 1961, 78, 1310. 

(4) Early applications of the second moment scaling hypothesis are given 
in: (a) Pettifor, D. G.; Podloucky, R. Phys. Rev. Lett. 1984, 53, 1080. (b) 
Burdett, J. K.; Lee, S. J. Am. Chem. Soc. 1985,107, 3063. More recent work: 
(c) Cressoni, J. C; Pettifor, D. G. J. Phys.: Condens. Matter, submitted for 
publication, (d) Lee, S. J. Am. Chem. Soc. 1991, 113, 101. (e) Lee, S. J. 
Am. Chem. Soc. 1991, 113, 8216. (f) Hoistad, L. M.; Lee, S. J. Am. Chem. 
Soc. 1991, 113, 8216. (g) Lee, S. Ace. Chem. Res. 1991, 24, 249. 
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Gallium Theory 
P=ZSIA q=2.79 
r=267 §=2.43 

Experiment 
P=ZJO q=Z79 
r=Z74 s=2.47 

Figure 1. Crystal structure of elemental gallium. Using the Abma space 
group convention, the b axis is in the horizontal direction, the c axis is 
in the vertical direction, and the a axis is perpendicular to the plane of 
the paper. There are four inequivalent bond lengths in this structure 
which we label p, q, r, and 5. Experimental values are from single-crystal 
X-ray studies, while theoretical values are from our second-moment-
scaled calculations. Hiickel parameters used in this calculation are shown 
in Table I. We used an orthorhombic 27-k-point mesh in our optimi­
zation. 

Table I. Hiickel Atomic Parameters 

atom orbital 

B 2s 
2p 

C 2s 
2p 

H Is 
Ir, Os, Re 6s 

6p 
5d" 

Ga, Ge 4s 
4p 

"f2 = 2.277 (0.5910). 

Hu, eV 
-15.2 

-8.5 
-21A 
-11.4 
-13.6 

-9.36 
-5.96 

-12.66 
-16.0 

-9.0 

f> 
1.30 
1.30 
1.625 
1.625 
1.30 
2.398 
2.372 
5.343 (0.6662) 
2.16 
1.85 

ref 

5b 

5a 

5a 
Sj 

5k 

systems ranging from intermetallic compounds and alloys to 
transition and main group elemental structures. In this model 
one assumes the repulsive interaction between atoms can be ac­
counted for indirectly by changing the bandwidth of a Hiickel 
or extended Hiickel calculation. In particular, one fixes the overall 
variance of the Hiickel molecular orbitals to a set value. The 
variance is defined to be 

1 
" 1 = 1 

2^(£<(' Ezvg) 

where £,'s are the molecular orbital energies, £avg is the average 
orbital energy, and there are a total of n molecular orbitals in the 
system. We discuss the underlying assumptions of this method 
in the Appendix. 

In applying this method, we adopt the following general pro­
cedure. We first calculate the total Hiickel electronic energy of 
each of the crystal structure types that we wish to study. These 
total energies are then scaled so as to have the same overall 
variance. It is usually convenient to select one structure and to 
then scale all variances to the value originally calculated for this 
selected compound. In practice, we change the overall density 
of the structures in an iterative process until the variance equals 
that of the selected compound. Other than this, we use a standard 
Hiickel method in our band calculations. The diagonal matrix 
elements of our Hiickel Hamiltonian are taken from a set of 
parameters developed by Hoffmann and others.5 We use the 
Wolfsberg-Helmholz approximation in calculating off-diagonal 
matrix elements.6 Unlike the manner in which extended Hiickel 

(5) Many important atomic parameters are reported in the following: (a) 
Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Hoffmann, R.; Anderson, 
A. B. J. Chem. Phys. 1974, 60, 4271. (c) Hoffmann, R.; Rossi, A. R. Inorg. 
Chem. 1975,14, 365. (d) Hay, P. J.; Thibeault, J. C; Hoffmann, R. J. Am. 
Chem. Soc. 1975, 97, 4884. (e) Hoffmann, R.; Elian, M. Inorg. Chem. 1975, 
14, 1058. (f) Hoffmann, R.; Summerville, R. H. J. Am. Chem. Soc. 1976, 
98, 7240. (g) Komiya, S.; Albright, T. A.; Hoffmann, R. Inorg. Chem. 1978, 
17, 126. (h) Hughbanks, T.; Hoffmann, R.; Whangbo, M.-H.; Stewart, K. 
R.; Eisenstein, O.; Canadell, E. / . Am. Chem. Soc. 1982,104, 3876. (i) Chen, 
M. M. L.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1647. (j) Dedieu, A.; 
Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979,101, 3141. (k) Thorn, 
D. L.; Hoffmann, R. Inorg. Chem. 1978, 17, 126. 

(6) Wolfsberg, M.; Helmholz, L. J. Chem. Phys. 1957, 20, 83. 

Figure 2. Total energy per atom in elemental gallium as a function of 
the b/a, c/a, z, and x structural parameters. The dark circles indicate 
the known experimental values for these parameters. Hiickel parameters 
used in this calculation are shown in Table I. 

calculations are performed, we solve the secular equation HVr = 
EV and not HV = ESV. 

This method has been used primarily as a tool for making 
structure maps as a function of electron count.4,7 For example, 
we find for alloys that the -y-brass structure is the most stable 
structure type near 11.65 s, p, and d valence electrons per atom 
(e/a), while the hexagonal closest-packed structure is stable be­
tween 11.75 and 12.00 s, p, and d e/a.4f8 However, as of yet, 
we have not used this method to resolve the variation in bond 
lengths of a given structure type. Let us consider for example 
elemental gallium. We have recently shown that the elemental 
gallium structure, illustrated in Figure 1, is of lower energy than 
other main group structures such as the diamond or the face-
centered-cubic structure near 3 s and p e/a. However, elemental 
gallium has orthorhombic crystal symmetry. Hence it has three 
variable cell parameters which correspond to the a, b, and c axis 
lengths. Furthermore, the elemental gallium structure type also 
contains two atomic parameters x and z which control the position 
of the gallium atoms within the unit cell.10 These cell and atomic 
parameters determine the bond distances and the bond angles 
within the gallium crystal. As the goal of our current work is to 
calculate reliably the variations of bond distances, we need to devise 
a technique which predicts the values of these positional param­
eters. In this paper, we will adopt the following general procedure 
to determine positional parameters. In all cases, we begin with 
a trial solution for the values of the positional parameters. We 
then vary a single positional parameter while holding all other 
parameters constant so as to determine the value of this chosen 
parameter which minimizes the total Hiickel energy. We proceed 
in an iterative fashion until a fully convergent solution is reached. 
By way of verification that this minimum-energy solution is indeed 
the global minimum, we consider alternate initial trial solutions. 

(7) (a) Zunger, A. Phys. Rev. B 1980, 22, 5839. (b) Burdett, J. K.; Price, 
G. D.; Price, S. L. Phys. Rev. B 1981, 24, 2903. (c) Pettifor, D. G. Solid State 
Commun. 1984, 51, 37. (d) Pettifor, D. G. J. Phys. C 1986, 19, 285. 

(8) Both the 7-brass and hexagonal closest-packed structures are electron 
compounds. The term "electron compounds" denotes a structure type whose 
range of stability is determined by the number of valence electrons per atom. 
It is well established that the electron counts listed in the text for these two 
materials which are the result of our earlier calculations (see ref 4f) are in 
fact in close agreement with the true experimental values. See discussion in: 
Hume-Rothery, W.; Raynor, G. V. The Structure of Metals and Alloys; 
Institute of Metals: London, 1962; p 194. 

(9) A preliminary communication on the B8H8
2", B9H9

2", and B10H10
2" 

calculations is reported in: Hoistad, L. M.; Lee, S.; Chou, D. C. R. Acad. Sci., 
Ser. 2 1991,313, 159. 

(10) We have used the following nonstandard space group in our calcu­
lations. First, we follow much of the literature and adopt the Abma setting 
for the orthorhombic axes. Second, we place the gallium atoms at the eight 
symmetry-equivalent sites (x, 0, z), ('/4 - x, 0, ' /2 - z), (V2 + *. 0. -*). ( /4 
-x, 0, V2 + z), (x, V2, '/2 + z), (V4 - x, V2, -2), (V2 + *, V2. Va" z), and 
( /4 - x, V2, z). These nonstandard settings have the advantage that for values 
x = 0, z = 0, and b/a = V3/2 one has perfect two-dimensional closest-packed 
layers perpendicular to the c axis. 
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Figure 3. Structure of [Re4(CO)16]
2". 

However, in general the energy curves are relatively smooth, and 
hence this last step, which is necessary in the case of false minima, 
has not proven to be a significant issue. 

For example, we have applied this method to the gallium system 
described above. We find the optimal values of the ratios of the 
cell parameters c/a and b/a are 1.61 and 0.94 as compared to 
experimental values of 1.69 and 0.99. Similarly, the theoretical 
optimal values of x and z are 0.035 and 0.100 as compared to 
experimental values of 0.044 and 0.095. It may be seen that the 
agreement between theory and experiment is good. In Figure 2 
we plot the total Huckel energy as a function of these four pa­
rameters near this minimum-energy solution. In this figure it may 
be noted that the agreement between experiment and theory is 
best in the case of the steeper parabolas (e.g., the z parameter 
curve) and worse in the case of shallow parabolas (e.g., the b/a 
parameter curve). Unfortunately, it is not immediately clear how 
one might further interpret our displayed results. The reasons 
for this are 2-fold. First, we are only able to determine the values 
of the structural parameters a, b, c, x, and z subject to the con­
straint that the variance is equal to a fixed value. As variance 
is proportional to overlap of atomic orbitals and as overlap is in 
turn proportional to atomic density, we have constrained the overall 
molecular size. It is for this reason that in Figure 2 we have 
calculated only unitless quantities such as c/a, b/a, x, and z. 
Second, although we know such unitless parameters control the 
overall shape of the crystalline system, it is quite difficult in 
practice to convert such abstract numbers into clear geometric 
factors. 

In order to evaluate the accuracy of our estimates of the var­
iation in bond lengths, we have decided to present our data in a 
somewhat artificial but geometrically clear manner. We use the 
variance of the experimentally known chemical system to set the 
overall size of the crystal. In this manner we scale the crystal 
systems so that the average bond length of our theoretically op­
timized geometry is set roughly equal to the experimentally known 
average bond length. We show a list of such bond lengths for 
the elemental gallium structure in Figure 1. It may be seen that 
our calculations correctly find that one of the gallium bonds is 
much shorter than the other bonds (by approximately 0.3 A). Our 
overall bond lengths are in general within 0.1 A of the true dis­
tances. This error is clearly smaller than the variation in bond 
distances, and therefore our results are statistically significant. 

It is important to note that while the overall size factor derived 
from second-moment scaling is important in determining the 
average bond length, it has little effect on unitless quantities such 
as the ratio of bond distances. As a simple demonstration, we 
consider the [Re4(CO)16]

2" ion.11 This ion is illustrated in Figure 
3. It may be seen in this figure that one of the structural pa­
rameters is the unitless parameter 6, the bond angle which controls 
the length of the transannular Re-Re bond. In experimentally 
observed [Re4(CO)16]

2", the 8 angle is 59.04°. We have calculated 
the optimal value for this 8 angle for three different Re-Re average 
bond lengths. We chose average bond distances of 2.99, 2.69, and 
3.29 A. The first value corresponds to the true experimental 
average, while for the last two we have changed this average by 
±10%. These last two bond distances represent extreme values; 
average Re-Re bond lengths shorter than 2.69 A or longer than 
3.29 A are not chemically reasonable. Nevertheless, for each of 
these three cases, we find the optimal value for the unitless 8 
parameter is essentially constant. For the 2.69, 2.99, and 3.29 

(11) Churchill, M. R.; Bau, R. Inorg. Chem. 1968, 7, 2606. 

Hoistad et al. 

Figure 4. Closo, nido, and arachno geometries. We show here the 
location of the boron atoms in respectively B10H10

2", B10H10
4", and 

B10H10 . 

A average bond distance, we find respectively 8 values of 60.7, 
59.9, and 58.5°. This is a clear illustration that our method can 
indeed estimate unitless structural parameters without recourse 
to exact second-moment values derived from experimental ge­
ometries. 

Borohydrides 
The same method may be applied to molecular systems as well. 

As our first series of examples, we will consider the borohydrides, 
which are a large family of electron-deficient clusters.12 A few 
of these clusters are illustrated in Figure 4. Borohydrides have 
been well studied by theorists. It is well accepted today that their 
structures can be understood through the use of Wade's rules and 
molecular orbital theory.13 However, to our knowledge the 
calculations we present in this article are the first calculations 
of the Huckel type predicting the variation in bond lengths in these 
cluster systems. 

Borohydride clusters are generally divided into the closo, the 
nido, and the arachno deltahedral families. An example of each 
of these three families is shown in Figure 4. It may be seen that 
the closo forms are the most symmetric clusters. They are the 
parent clusters from which the nido and arachno clusters can be 
derived. We therefore have begun our study of borohydride 
clusters with the closo family of structures. These include the 
set of ions B„H„2~ where n = 6—12. Among this set, the ions B7H7

2" 
and B11H11

2" have never been resolved by single-crystal X-ray 
studies. In the absence of good structural data, B7H7

2" and 
B11H11

2" are not good test cases as to the reliability of our cal-
culational method. Similarly, B6H6

2" and B12H12
2" are also not 

useful systems for study. This is because these latter two clusters 
have respectively octahedral and icosahedral point symmetries 
and therefore have only one type of B-B bond length. Hence they 
are not suitable for a direct study of bond length variation. We 
therefore consider here the three remaining closo structures, 
B8H8

2", B9H9
2", and B10H10

2".14 

We consider first the B10H10
2 cluster, which has D^ point group 

symmetry (see Figure 4). There are a total of 24 positional B 
parameters in this system if one allows all possible distorting 
motions. With our rather straightforward technique of finding 
the minimum-energy surface, it is difficult for us to find the 
minimum for this number of variables. We have therefore chosen 
to limit the number of positional parameters. This is analogous 
to the procedure we adopted in the preceding section for elemental 
gallium. In this earlier analysis, we limited ourselves to five 
parameters by fixing the Abma space group symmetry. For 
B10H10

2" there are only three positional parameters, assuming a 
Di,d point group symmetry. We therefore use the iterative pro­
cedure described in the preceding section to find the values for 
these parameters which minimize the total electronic energy. As 
before, we have optimized the overall geometry subject to the 
constraint that the variance is equal to that found for the true 
experimental geometry. 

It may be noted that there is one marked difference between 
elemental gallium and the borohydride systems. In the former 

(12) A recent overview is given in: Olah, G. A.; Wade, K.; Williams, R. 
E. Electron Deficient Boron and Carbon Clusters; Wiley: New York, 1991. 

(13) (a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (b) Ru­
dolph, R. W.; Pretzer, W. R. Inorg. Chem. 1972, / / , 1974. (c) Williams, R. 
E. Inorg. Chem. 1971,10, 210. (d) Stone, A. J. Inorg. Chem. 1981, 20, 563. 
(e) Mingos, D. M. P. Ace. Chem. Res. 1984, /7, 311. 

(14) (a) B8H8
2": Guggenberger, L. J. Inorg. Chem. 1969, 8, 2771. (b) 

B9H9
2": Guggenberger, L.J. Inorg. Chem. 1968, 7, 2261. (C)B10H10

2": Gill, 
J. T.; Lippard, S. J. Inorg. Chem. 1975, 14, 751. 
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Experiment 

a= 1.56A 
b= 1.72 
C= 1.76 
d= 1.93 

Theory 

1.54A 
1.64 
1.82 
1.90 

a= 
b= 
C= 

1.71 A 
1.84 
1.90 

1.70A 
1.75 
1.98 

a= 
b= 
C= 

1.68A 
1.79 
1.82 

1.65A 
1.79 
1.87 

BioHio2-

Figure 5. Experimental and theoretically derived bond lengths for 
B8Hj2", B9H9

2", and Bi0H10
2". For experimental values we have averaged 

the bond lengths which should be equivalent in respectively ideal D^, D2/,, 
and DM point group symmetries. Hiickel parameters used in this cal­
culation are shown in Table I. 

all bonds are homoatomic, while in the latter system there are 
B-H bonds in addition to B-B bonds. This is important, as the 
second-moment scaling technique can be applied only to purely 
covalent bonds, where there is little or no charge transfer. 
However, changing the boron-hydrogen bond distance would result 
in exactly this sort of unwanted charge transfer. We therefore 
consider only variations of the B-B bonds and fix the B-H bonds 
to a constant and reasonable length. Furthermore, we require 
that the B-H bonds point in a purely radial manner with respect 
to the center of the cluster. In Figure 5 we compare the theo­
retically determined minimum-energy geometry to the true ex­
perimental structure. It may be seen that there is good agreement 
between theory and experiment. 

The same holds for other borohydrides such as B8H8
2" and 

B9H9
2" as well. We show in Figure 5 a comparison of observed 

and calculated bond distances for these clusters where we have 
assumed B8Hg

2" and B9H9
2" have respectively Dld and D3h sym­

metries. For all the species shown in Figure 5, we find the the­
oretical calculations determine which bonds should be longest and 
which should be weakest in any given structure. Furthermore, 
all calculated distances are within 0.10 A of the true bond distances 
and in most cases the error is less than 0.05 A. 

Transition Metal Carbonyl Clusters 
Another well-known family of cluster compounds is transition 

metal carbonyl compounds. It is generally accepted today that 
these compounds follow the same electron-counting rules as the 
borohydrides discussed in the previous section.133 In this scheme, 
the boron atoms and hydrogen atoms are replaced by respectively 
transition metal atoms and carbonyl (carbon monoxide) groups. 
There are however several important structural differences between 
transition metal carbonyl clusters and the borohydride ones. First, 
the resemblance of transition metal clusters to the borohydride 
compounds is clear only in small clusters which contain six or fewer 
metal atoms. Second, the large majority of transition metal 
carbonyl compounds contain bridging carbonyl ligands, i.e., 
carbonyl groups which are simultaneously bonded to more than 
one transition metal atom. This is in sharp contrast to the closo 
borohydrides, which have only nonbridging (terminal) hydrogen 
atoms. Third, the ratio of carbonyl groups per transition metal 
atom is much higher than the corresponding ratio between hy­
drogen and boron atoms. 

These structural differences have a direct consequence as to 
the systems that we can study with our second-moment scaling 
method. Due to the first difference enumerated above, we will 

Experiment Theory 

O= 96.60 96.68 

Ir4(CO)1 2 

a= 
b= 
C= 
d= 

2.87A 
2.89 
2.75 
2.75 

3.01 A 
2.94 
2.71 
2.65 

OSs(CO)U 
Figure 6. Structures of Ir4(CO)12 and Os5(CO)16. 
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Figure 7. Energy of Ir4(CO)12 as a function of the C-Ir-C bond angle, 
<t>. See Table I for a listing of the Hiickel parameters used in this 
calculation. 

study only smaller transition metal clusters, as we wish to study 
compounds which are analogous to our borohydride systems. 
Secondly, we will consider only the comparatively few transition 
metal systems which do not contain bridging carbonyl ligands. 
The reason for this second restriction may be understood if we 
recall that we can only study homoatomic bond breakage; cleavage 
of metal atoms bridged by a single carbonyl group would perforce 
break a heteroatomic metal-carbon bond. 

Finally, the last structural difference discussed above, i.e., the 
high ratio of carbonyl groups to metal atoms, results in new 
structural parameters. These correspond to bond angles between 
metal atoms and carbonyl groups. They must now also be con­
sidered. As a simple example of this last difference, we turn to 
the Ir4(CO)12 molecule.15 This molecule has tetrahedral (7^) 
symmetry and is illustrated in Figure 6. If we require the molecule 
to be of Td symmetry, there are only four variable parameters. 
These are the Ir-Ir, Ir-C, and C-O bond lengths and the C-Ir-C 
bond angle, <)>. In our method of geometry optimization, we hold 
all ligand bond lengths constant. We therefore set the Ir-C and 
C-O bond lengths at reasonable and fixed values. Furthermore, 
the overall fixed second moment eliminates the Ir-Ir bond as a 
structural variable. Hence the only remaining variable is 0. In 
Figure 7 we show the energy dependence of the molecule as a 
function of <£, where we have scaled the variance to the experi­
mentally determined value. The function is essentially a parabola 
with a minimum energy at <t> = 96.68°. This compares to the 
experimentally known value of 96.60°. It may be seen that our 
calculated value falls within the experimental error of the known 
geometry. Agreement between theory and experiment is essentially 
perfect. 

(15) Churchill, M. R.; Hutchinson, J. P. lnorg. Chem. 1978, 17, 3528. 
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Table II. Experimental and Theoretically Calculated Bond Lengths 
(A) and Angles (deg) of Some Carbon-Containing Molecules" 

Figure 8. Energy of [Re4(CO)16]2" as a function of the Re-Re-Re bond 
angle, B. See Table I for the Huckel parameters used in this calculation. 

We can consider other more complicated geometries. We have 
examined the geometry of [Re4(CO)i6]

2~, which has the D2 

symmetry illustrated in Figure 3. As our principal interest is the 
energetics of metal-metal bonds, we fix the individual carbonyl 
groups at fixed angles. In this manner we turn each Re(CO)4 

unit into a rigid body whose orientation is fixed relative to the 
center of the cluster. As the overall variance is set by the ex­
perimental geometry, only one structural parameter remains. This 
is the angle 8 shown in Figure 3. We show in Figure 8 the total 
energy of this species as a function of 8. It may be seen that this 
function is symmetrical around the value of 6 = 90°. This sym­
metry corresponds to the square geometry found when 6 = 90°. 
The theoretically calculated minima for 8 are 59.95 and 120.05°. 
This agrees closely with the experimental value of 8 = 59.04°. 
Figure 8 also shows that [Re4(CO)16]2" is not a fluxional species; 
indeed, the barrier height between the two stable geometries is 
over 3 eV/molecule. 

As a last example, we consider the Os5(CO)i6 molecule, which 
is also illustrated in Figure 6.16 In this molecule, four of the five 
Os atoms have three terminal CO ligands, while the fifth Os is 
attached to four carbonyl groups. This slight asymmetry lowers 
the molecule from Dih to C20 symmetry. As in the preceding 
example, we treat the four Os(CO)3 and the single Os(CO)4 

molecules as rigid bodies whose orientation is fixed relative to the 
cluster center. These constraints leave a total of three variable 
parameters for our optimization procedure. As may be seen in 
Figure 6, the agreement between experimental and theoretical 
bond distances is reasonable. Of the four Os-Os bond types, it 
is experimentally observed that two are longer, while the remaining 
two are shorter. Our calculations correctly reproduce this result. 
Finally, no calculated bond distance deviates from the true ex­
perimental distances by more than 0.1 A. 

Hydrocarbons 
Huckel and eH methods were originally developed to understand 

structural features of hydrocarbon molecules. Using the Huckel 
method one can show there is a quantitative relationship between 
bond length and the calculated Huckel bond order. One can 
therefore reasonably expect that our calculational method can be 
used to optimize hydrocarbon geometries. However, it should be 
noted that as the original Huckel and eH calculations show good 
correlation between the overlap population of bonded atoms and 
their bond length, the structural consequences of overlap popu­
lations between nonbonded atoms can only be small.3 This presents 
us with a clear problem. The accepted carbon Slater-type orbitals 
(STO) lead to strong interatomic overlaps at distances greater 
than those found for first-nearest neighbors. 

We have therefore optimized the geometry of several hydro­
carbons by our second-moment-scaling technique using two dif­
ferent techniques. In the first set of calculations we considered 
nonzero off-diagonal terms in our Hamiltonian only between 
bonded atoms, while in the second set we considered all overlaps 

(16) Reichert, B. E.; Sheldrick, G. M. Acta Crystallogr. 1977, B33, 173. 

naphthalene 

a = 
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c = 
d = 

a = 
b = 
c = 
d = 

1.418 
1.421 
1.364 
1.415 

1.448 
1.421 
1.330 
1.436 

spiropentane 

a = 
b = 
B = 

butadiene 

Experimental 
1.519 
1.469 
62.2 

a = 1.463 
b= 1.341 
B = 123.3 

Calculated: Nearest-Neighbor 
a = 
b = 
B = 

1.517 
1.470 
62.1 

a = 1.597 
b = 1.288 
B = 127.3 

buckminster-
fullerene 

a = 1.432 
b= 1.388 

Only 
a= 1.497 
b= 1.301 

Calculated: All Interactions Considered6 

a = 1.594 a = 1.496 a = 1.642 
b = 1.409 b = 1.495 b = 1.269 
c =1.332 0 = 60.0 9=127.6 
d= 1.419 

"See Figure 9 for the locations of the various bonds. 'When all 
orbital interactions are considered, C60 is not a stable configuration. 
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Figure 9. Structures of some carbon-containing molecules: (A) naph­
thalene (C10H8); (B) spiropentane (C5H8); (C) butadiene (C4H6); (D) 
buckminsterfullerene (C60). Black circles indicate the locations of the 
carbon atoms. The letters a, b, c, d, and B refer to inequivalent bond 
distances and bond angles. See Table II for calculated values. 

in determining the Hamiltonian. In particular, we considered the 
molecules naphthalene, butadiene, spiropentane, and buck­
minsterfullerene (C60). These molecules have respectively D2h, 
Cih D14, and Ih point group symmetries. They are illustrated in 
Figure 9. There are four variable parameters for naphthalene, 
two for butadiene, one for spiropentane, and one for buck­
minsterfullerene. Table II illustrates the reasonable agreement 
found between the theoretically minimized geometries of these 
molecules and their true geometries.17 It may be seen that the 
model where we consider only nearest-neighbor interactions 
produces on the whole a more reasonable estimate of bond length 
variations. It is interesting to note that we observed a similar effect 
in earlier work in comparing silicide structures such as ThSi2 and 
ZrSi "" 4,18 

Wade's Rules 
The previous results clearly illustrate that if we know the point 

group symmetry of a given molecule, we are then able to calculate 
accurately with our method the unitless structural parameters of 
that molecule. It is clear that our method would be even more 
effective were we able to optimize geometries without knowledge 

(17) Buckminsterfullerene: Hawkins, J. M.; Meyer, A.; Lewis, T. A.; 
Loren, s.; Hollander, F. J. Science 1991, 252, 312. Parameters for hydro­
carbons can be found in: Dewar, M. J. S.; Theil, W. J. Am. Chem. Soc. 1977, 
99, 4908. 

(18) Some insight into the true energetic importance of non-nearest-
neighbor interactions may be garnered from a comparison of the relative 
stability of carbon in the diamond and graphite structural forms. As is 
well-known, these two structures have nearly the same energy. In our model 
using only nearest-neighbor interactions we find that diamond is more stable 
than graphite by 0.6 eV/atom. However, when all orbital interactions are 
considered, graphite is lower in energy by 1.7 eV/atom. These results imply 
that the energetic role of second and further neighbors is nonnegligible but 
that our calculations overestimate their energetic importance. 
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Figure 10. Differences in energy among the closo, nido, and arachno 
forms as a function of the number of electrons per BH formula unit for 
(a) 6-vertex polyhedra, (b) 8-vertex polyhedra, (c) 9-vertex polyhedra, 
and (d) 10-vertex polyhedra. The curves plotted are the differences in 
energy between the given structures and the nido forms. See text for 
further figure conventions. Note on the x axis we indicate in all graphs 
three different electron count values. These correspond to the electron 
counts of the experimentally known closo, nido, and arachno structures. 
Thus in (a), B6H6

2", B6H6
4", and B6H6

6" have respectively 4.33, 4.67, and 
5.00 valence electrons per BH formula unit. 

of the point group symmetry. Unfortunately, the removal of this 
limitation leads in general to an unwieldy number of parameters. 
For example, in our calculation on B10H10

2", we had to consider 
only three parameters when we restricted ourselves to D4d sym­
metry. Removal of the symmetry constraint leads to at least 24 
parameters, which is too large a number for us to treat directly. 

However, we have some results on borohydride systems which 
indicate that this point group symmetry constraint may not be 
a firm requirement for our method. For borohydride systems, 
we have indeed compared molecules with different point group 
symmetries. For example, it is known that B10H10

2" forms the 
closo structure discussed previously. In accord with Wade's rules, 
reduction of this cluster to either B10H10

4" or B10H10
6" changes 

the shape of the cluster to the nido and arachno forms illustrated 
in Figure 4. The geometries of each of these species can be derived 
from X-ray studies, and therefore we can compare directly the 
energies of these three geometries.19 We do so by the method 
described previously, in which we scale two of the clusters to have 
the same variance as that found in the third. We compare these 
energies as a function of the number of valence electrons. In 
Figure 1Od we plot the difference in electronic energies between 
the nido B10H10

4" cluster and each of the other two clusters. In 
this figure we adopt the following convention as to the sign of this 
difference of energies. We choose the sign so that, at any given 

(19) We obtained atomic coordinates either directly from single-crystal 
X-ray structures of the desired borane or from application of Wade's rules 
to the known X-ray structure of the closo parent. We used boron positions 
from Bi0H10

2", B10Hn, and B12H12
2" to produce respectively the closo, nido, 

and arachno 10-vertex polyhedra. In the last case we removed two of the 
original vertices so as to produce a B10H10

6" cluster. The experimental values 
are taken from the following sources, (a) B10H10

2": Reference 14c. (b) 
B10H14: Kasper, J. S.; Lucht, C. M.; Harker, D. Acta Crystallogr. 1950, 3, 
436. (c) B12H12

2": Wunderlich, J. A.; Lipscomb, W. N. J. Am. Chem. Soc. 
1960, 82, 4427. 

electron count, the structure whose corresponding curve is the most 
positive (i.e., one closest to the top) is the stable structure. For 
the absissca we use the number of valence electrons per BH unit. 
Thus in B10Hi0

2", B10H10
4", and B10H,0

6" there are respectively 
4.25, 4.50, and 4.75 electrons per BH unit (e/BH). According 
to our calculations, at these three electron counts the closo, nido, 
and arachno forms are respectively the most stable geometries. 
The results of our calculations therefore are in perfect agreement 
with the known experimental geometries. We have also considered 
in a similar manner the B6H6"", B8H8"", and B9H9"" families (n 
= 2, 4, 6) of clusters. In each of these cases, there is again a 
perfect match between experiment and theory. Furthermore, these 
are the only four cases where the closo, nido, and arachno ge­
ometries can be directly derived from X-ray structural work.20 

These results strongly indicate not only that we might be able to 
consider change in point group symmetry but also that our cal-
culational method models correctly the forces responsible for 
Wade's rules. 

Conclusions 
In this paper we have shown that a properly modified Huckel 

theory can model well the bond length variations found in various 
homoatomic clusters and elemental structures. In one sense, this 
conclusion is not altogether surprising. It has been known for a 
long time that the Huckel bond order and overlap populations can 
successfully account for such bond length variations. From another 
viewpoint however, these results are surprising. It is generally 
believed that Huckel calculations are numerically far inferior to 
ab-initio Hartree-Fock calculations. However, we have shown 
almost uniformly across the periodic table that we can use Huckel 
theory to correctly model bond-breaking processes.21 It is clear 
that the rather naive Huckel theory does indeed capture the nature 
of the chemical bond in the highly covalent systems discussed in 
this article. 
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Appendix 
We briefly review the underlying assumptions of the second-

moment-scaling procedure. The goal of this method is to estimate 
in an effective way the total electronic energy, Er. We first assume 
that E1 = U(r) - V(r) where U is the hard-core atomic repulsion, 
V is the attractive bonding term, and r is a parameter which 
corresponds to the overall size of the system. We assume that 
Huckel theory correctly estimates the value of V(r). We then 
follow the idea of Heine et al.22 that the repulsion energy is 

(20) Neither B7H7
2" nor BnH11

2" has been characterized by X-ray sin­
gle-crystal studies. The structures of B6H6

2", B8H8
2", and B9H9

2" have all been 
determined by single-crystal X-ray studies. The boron positions of B6H6

2", 
B9H9

4", and B9H9
6" were taken to be the boron positions found in respectively 

B6Hj0, 89H12, and B9H15. The boron positions of B6H6
6" and B8H8

6" were both 
derived from the parent closo structures from which the appropriate vertices 
were removed. The experimental values were taken from the following 
sources, (a) B6H6

2": Schaeffer, R.; Johnson, Q.; Smith, G. S. Inorg. Chem. 
1965,4,917. (b) B8H8

2" (also used to derive B6H6
6"): Reference 14a. (c) 

B9H9
2" (also used to derive B8H8

4"): Reference 14b. (d) B6H10: Hirshfeld, 
E. L.; Eriks, K.; Dickerson, R. E.; Lippert, E. L.; Lipscomb, W. N. J. Chem. 
Phys. 1951, 28, 56. (e) B9H12": Jacobsen, G. B.; Meina, D. C; Morris, J. 
H.; Thomson, C; Andrews, S. J.; Reed, D.; Welch, A. J.; Gains, D. F. /. 
Chem. Soc, Dalton Trans. 1985, 1645. (f) B9H15: Dickerson, R. E.; 
Wheatley, P. J.; Howell, P. A.; Lipscomb, W. N. J. Chem. Phys. 1957, 27, 
200. (g) B8H8

6" was derived from B10H10
2": see ref 14c. 

(21) It is well-known that the classical or restricted Hartree-Fock model 
is unable to model the energetics of bond breaking. This difficulty is generally 
called the dissociation problem. It is discussed in: Szabo, A.; Ostlund, N. 
S. Modern Quantum Chemistry; Macmillan: New York, 1982; p 221. 

(22) Heine, V.; Robertson, I. J.; Payne, M. C. In Bonding and Structure 
of Solids; Haydock, R., Inglesfield, J. E., Pendry, J. B., Eds.; Royal Society: 
London, 1991. 
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proportional to the coordination numbers of the atoms in the 
system, C. This repulsion energy is due to "Coulomb repulsion 
of the nuclei and the exclusion principle in the overlap of the 
atoms".22 As has been shown by Friedel and Cyrot-Lackmann23 

C = UfI2 = a C E2 p(E,r) AE 

where p(Ej) is the electronic density of states of the valence bands, 
which itself is (among other things) a function of the overall size 
of the system. We therefore find that the total energy E1 is 

Er = aj°E2 p(E,r) dE + J] *E p(E,r) dE 

The first term on the right-hand side of the equation is the re­
pulsive energy, U(r), while the second term is the attractive energy, 
-V(r). The term E? refers to the Fermi energy for the system 
in question. We now follow the argument first discussed by 
Pettifor.24 We consider two systems which we label 1 and 2. The 
terms ETl, [/,, V1, E11, U2, and V2 refer to the various energies 
of these two systems. We wish to perform calculations where AE 
= E71 - Ej2. It may be seen that 

(23) (a) Friedel, J. Adv. Phys. 1954, 3, 446. (b) Cyrot-Lackmann, F. / . 
Physiol. (Paris), Suppl. 1970, Cl, 67. 

(24) Pettifor, D. G. / . Phys. C: Solid Slate Phys. 1986, 19, 285. 

Introduction 

The Diels-Alder cycloaddition is among the most powerful tools 
in organic synthesis,1,2 since it allows a direct access to cyclic, 
highly functionalized systems in a regioselective and stereo-
controlled way. The reaction conserves the stereochemistries of 
the diene and alkene,1,2 and a stereocenter on one or both the 
reactants is often able to influence the relative stereochemistry 
of the newly formed stereogenic centers in the products.2 Thus, 
both the relative and the absolute configuration at all the ster-
eocenters can be controlled in the synthesis of highly functionalized 
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A £ = 17,(1-,«,) - F1(I-,,,) - l/2(r2K)) + V2(r2ai) 

where /-,„, and r2cq refer to the respective equilibrium sizes of the 
two systems. 

We use the fact that we are interested in equilibrium geometries 
in the following way. Note that near equilibrium ETi is constant. 
Therefore 

U2(r2eq) - V2{r2tq) = U2(r2eq+d) - K2(r2eq+</) 

In particular, we choose a value for d such that U2(r2tq+d) = 
^('leq)- We now find that 

AE = fE*E p,(£,r leq) dE - f^E p2(E,r2eq+d) dE (1) 

We determine the value rleq from the true experimental size factor 
and r2eq + d from the equality 

J * > p2(E,r2oi+d) dE = J* V p,(£,rleq) dE 

This last expression is equivalent to stating 

M2(r2eq+<0 = Mj^leq) (2) 

It may be seen that eqs 1 and 2 correspond exactly to the sec­
ond-moment-scaling hypothesis. 

molecules, provided that the factors influencing the diastereose­
lectivity are known and predictable. 

Even greater control is possible when both reactants are part 
of the same molecule: intramolecularity enhances the factors 

(1) Some reviews of the Diels-Alder reaction: (a) Martin, J. G.; Hill, R. 
K. Chem. Rev. 1961,61, 537-562. (b) Sauer, J. Angew. Chem., Int. Ed. Engl. 
1966, 5, 211-230. (c) Sauer, J. Angew. Chem., Int. Ed. Engl. 1967, 6, 16-33. 
(d) Houk, K. N. Ace. Chem. Res. 1975,8, 361-369. (e) Sauer, J.; Sustmann, 
R. Angew. Chem., Int. Ed. Engl. 1980,19, 779-807. (f) Gleiter, R.; Bohm, 
M. C. Pure Appl. Chem. 1983, 55, 237-244. 

(2) Some reviews of asymmetric Diels-Alder reactions: (a) Paquette, L. 
A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New 
York, 1984; Vol. 3, pp 455-501. (b) Oppolzer, W. Angew. Chem., Int. Ed. 
Engl. 1984, 23, 876-889. (c) Helmchen, G.; Karge, R.; Weetman, J. In 
Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag: Berlin, 1986; 
Vol. 4, pp 261-306. (d) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1987, 
43, 1969-2004. 
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Abstract: A quantitative model based upon Allinger's MM2 force field has been devised to calculate the diastereoselectivity 
of intramolecular Diels-Alder (IDA) reactions. The parameters for the modified MM2 force field were derived whenever 
possible from ab initio calculations on the intermolecular transition structures for the Diels-Alder reactions of butadiene plus 
ethylene, acrolein, and acrolein coordinated to BH3. The force field reproduces the ab initio 3-2IG transition structures for 
the intramolecular Diels-Alder reactions of 1,3,8-nonatriene and 1,3,9-decatriene. The force field was developed for both 
thermal and acid-catalyzed reactions and provides insight into the origins of the diastereoselectivity in the IDA cycloaddition 
for a wide variety of nonatrienes and decatrienes. The flexibility of the transition structure and the conformational effects 
due to the chain connecting the two reacting moieties were shown to be of the greatest importance in determining the stereochemical 
outcome of these reactions. The use of the parameters in the new MM3 force field was tested. 


